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Exhaustive Computation. Generate every possible candidate 

solution and select an optimal solution.

Greedy.  Create next candidate solution one step at a time by 

using some greedy choice.

● Divide and Conquer.  Divide the problem into non-overlapping 

subproblems of the same type, solve each subproblem with the 

same algorithm, and combine sub-solutions into a solution to the 

entire problem.

● Dynamic Programming.  Start with the smallest subproblem and 

combine optimal solutions to smaller subproblems into optimal 

solution for larger subproblems, until the optimal solution for the 

entire problem is constructed.

Main algorithm design strategies
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1. Break into non-overlapping subproblems 
of the same  type

2. Solve subproblems

3. Combine results

Divide-and-conquer steps

Two examples:
● Counting inversions
● Closest pair



Counting inversions



Motivation
❏ Music site tries to match user song preferences 

with others.
❏ I rank n songs.
❏ Music site consults database to find people with 

similar tastes.

A B C D E F

me 1 2 3 4 5 6

you 1 3 4 2 5 6

songs

How similar are 
me and you?



SImilarity of rankings
❏ Similarity metric:

number of inversions between two rankings.
❏ My rank: 1,2,3,4,5,6 
❏ Your rank: 1,3,4,2,5,6

- for the same songs

A B C D E F

me 1 2 3 4 5 6

you 1 3 4 2 5 6

songs

For a perfect match 
you should have 
ranked D at 4, but you 
ranked it at 2



Definition
An inversion is a pair (A[i], A[j]) of array elements 
such that index i<j and A[i] > A[j]

i 1 2 3 4 5 6

A[i] 1 3 4 2 5 6

2 inversions in total:
(3,2) and (4,2)



Problem: counting inversions

Input: an array A of length n with numbers 1,2,…n in 
some order

Output: number of inversions: number of pairs A[i],A[j] 
of array elements with i<j and A[i] > A[j]

● If A is sorted – what is the number of inversions?

● What is the number of inversions if A is reversed?

● What is the number of inversions in A=[1,3,5,2,4,6]?



Example

• A=[1, 3, 5, 2, 4, 6]

• Inversions:

(3,2), (5,2), (5,4)

1 2 3 4 5 6

1 3 5 2 4 6

What is the largest-possible number of inversions that a 
6-element array can have?



Brute-force algorithm 
for counting inversions

count:= 0

for i from 1 to n-1:

for j from i+1 to n: 

if A[j] < A[i]

count:= count + 1

return count

Can we do better? 

Complexity?

Algorithm count_naive (array A of n integers)

But how can we do better if total 
number of inversions is O(n2)???



Idea 1: Divide + Conquer
After dividing array into 2 halves, n/2 each:
For each (i,j) recursively determine if (A[i],A[j]) is an 

inversion

There are 3 possible cases (3 types of inversions): 
Left inversions : if i,j <= n/2
Right inversions: if i,j > n/2
Split inversions : if i<=n/2 and  j > n/2

These two can be 
computed recursively

5, 3 2, 1n
2

But how to 
compute these?



Developing recursive algorithm

count (array A of length n)  

if n=1
return 0  

Else
x = count (1st half of A, n/2)  
y = count (2nd half of A, n/2)  
z = count_split_inv(A, n)

return x+y+z

We do not know how 
to do that

If we manage to do CountSplitInv in O(n) time

then Count will run in O(n log n) - just like Merge Sort



Idea 2. What if we use merge from 
merge sort?

❏ Have recursive calls both count inversions and 
sort 

❏ It turns out that the merge subroutine 
automatically recovers inversions!



Recursive Algorithm (in progress)

sort_count (array A of length n)  

if n=1
return (A,0)  

Else
(B, x) = sort_count (1st half of A, n/2)  
(C, y) = sort_count (2nd half of A, n/2)  
(D, z) = count_split_inv(B,C)

return (D, x+y+z)

If we manage to do count_split_inv in O(n) time then 

sort_count will run in O(n log n) - just like Merge Sort

We still do not know 
how to do that

B- sorted 1st half of A

C- sorted 2nd half of A



D = will contain sorted array

B = 1st sorted subarray [1:n/2]

C = 2nd sorted subarray [n/2:n]  

i = 1

j = 1

for k: = 1 to n

if B[i]< C[j]

D[k]: = B[i]

i:= i+1

else if C[j] < B[i]

D[k]: = C[j]

j:= j+1

...

CB

D

i j

k

merge subroutine: from Merge Sort



A. B has the smallest element of A, C has the second--
smallest, B has the third- smallest, and so on.

A. All elements of B are less than all elements of C.

A. There is not enough information to answer this 
question.

Suppose the input array A has no split inversions. 

What is the  relationship between the sorted subarrays B 
and C?

Stop and think

B C



Sample merge

1 3 5 2 4 6

1 3 5 2 4 6

1

B C

D

i j

Discovered 2 inversions: 
(3,2) and (5,2)



Sample merge

Discovered inversion 
(5,4)

1 3 5 2 4 6

1 3 5 2 4 6

1 2 3

B C

D

i j



General claim

The split inversions involving an element y of the 2nd array 
C are precisely the numbers left in the 1st  array B when y is 
copied to the output D.

Proof: 

Let x be an element of the 1st array B.
❏ If x copied to output D before y, then x < y

=> no inversions involving x and y

❏ If y copied to output D before x, then y < x
⇒ x and all elements after it are (split) inversions.



Recursive Algorithm (revised)

sort_count_inv (array A of length n)  

if n=1
return (A, 0)  

Else
(B, x) = sort_count_inv(1st half of A)  
(C, y) = sort_count_inv(2nd half of A)  
(D, z) = merge_count_split_inv(B,C)

return (D, x+y+z)

Split inversions are recovered during the merge of the 

sorted sub-arrays



Merge and count
• While merging the two sorted 

subarrays, keep running total of  
number of split inversions

• When element of 2nd array C gets

copied to output D, increment total by number of elements  

remaining in 1st array B

Runtime of merge_count_split_inv: O(n) + O(n) = 

O(n)
sort_count_inv runs in O(n log n) time

just like Merge Sort

CB

D

i j



Closest pair



Motivation

• Dynamic minimum spanning trees

• Straight skeletons and roof design

• Ray-intersection diagram

• Collision detection applications

• Hierarchical clustering

• Traveling salesman heuristics

• Greedy matching

• ...

“A pair of the closest points, 
the one lying on a robot and 
the other on its obstacles, 
yields the most important 
information for generation of 
obstacle-avoiding robot 
motions. ” ref

The closest-pair is a subroutine for:

https://www.sciencedirect.com/science/article/pii/S1474667017546546


Closest Pair Problem

• Input: n points in d dimensions

• Output: two points p and q
whose mutual distance is 
smallest 

A naive algorithm takes O(dn2) time.

(Number of dimensions d can be assumed a constant for 

a given problem)

Can we do better?



Closest pair in one dimension

Can be solved in O(n logn) via sorting, and then linear 
scanning.
Let’s develop a recursive solution to find the closest pair 

• If the points are sorted by their coordinate:

• Divide the points set S into 2 sets S1, S2, by median x-
coordinate m such that p<q for all p Є S1 and q Є S2

• Recursively compute closest pair (p1,p2) in S1 and (q1,q2) in 
S2



Closest pair in one dimension: 
combine step

• Let δ be the smallest pairwise distance found in 2 partitions

δ = min(|p2 – p1|, |q2 – q1|

• The closest pair is either (p1,p2), or (q1,q2), or some (p3,q3) 
where p3 Є S1 and q3 Є S2

• Can we find (p3,q3) in a constant time?



Closest pair in 1 dimension

• The closest pair is either (p1,p2), or (q1,q2), or some (p3,q3) 
where p3 Є S1 and q3 Є S2

• Key observation: If m is the dividing coordinate, then both 
p3 and q3 have to be within δ of m



Closest pair in 1 dimension

• Key observation: If m is the dividing coordinate, then both 
p3 and q3 have to be within δ of m

• How many such pairs exist?



Closest pair in 1 dimension

• Key observation: If m is the dividing coordinate, then both 
p3 and q3 have to be within δ of m

• How many points of S1 can lie in the interval (m – δ, m]?

• So we need to check one pair only - constant time



Closest pair 1D: recursive 
algorithm

closest_pair (S – set of sorted points pi…pn, n>=2)

if |S| = 2 

return δ = |p2 – p1|

Divide S into S1 and S2 at m = value[n/2]

δ1 = closest_pair (S1)

δ2 = closest_pair (S2)

δ3 = closest_pair_across (S1, S2, min(δ1, δ2))

return δ = min(δ1, δ2, δ3)
Constant time

Here we only compute the shortest 
distance, but it is easy to modify to return 

2 points which produced this distance



Closest pair in 1 dimension: 
time complexity

T(n) = 2T(n/2) + O(1)
Which solves into O(n)

Together with sorting: O(n log n)

Constant time

closest_pair (S – set of sorted points pi…pn, n>=2)

if |S| = 2 

return δ = |p2 – p1|

Divide S into S1 and S2 at m = value[n/2]

δ1 = closest_pair (S1)

δ2 = closest_pair (S2)

δ3 = closest_pair_across (S1, S2, min(δ1, δ2))

return δ = min(δ1, δ2, δ3)

We will learn why later



Closest pair in 2 dimensions

The previous algorithm does 
not generalize to higher 
dimensions, or does it?



2D closest pair: divide

• Taking sorting as a free O(n log n) invariant, we sort all 
points in S by x coordinate

• Partition S into S1, S2 by vertical line l defined by median x-
coordinate in S



2D closest pair: conquer
• Recursively compute closest pair distances δ1 and δ2 in S1

and S2
• Set δ=min(δ1, δ2)



2D closest pair: combine

• Closest pair distances in S1 and S2  are δ1 and δ2. 
δ=min(δ1, δ2)

• Now need to combine: compute the closest pair across 
dividing line l

• In each candidate pair (p,q), where p Є S1 and q Є S2, 

the only candidate points p, q must both lie within δ of l.



2D closest pair combine: 
complications

• At this point, complications 
arise, which were not 
present in 1D

• It is entirely possible that all 
n/2 points of S1 (and S2) lie 
within δ of l

• Naïvely, this would require 
n2/4 comparisons



Combining split points

• Consider a point p Є S1. 

• All points of S2 within distance δ 
of p must lie in a δx2δ rectangle 
R

• How many points can be inside 
R if we know that each pair is at 
least δ apart?

• In 2D, this number is at most 6!

So we only need to perform (n/2)*6 distance calculations 
during the combine step!
We do not have the O(n log n) algorithm yet. Why?



Combine in linear time

• In order to determine at most 6 potential mates of p, 
project p and all points of S2 into y axis

• Pick out points whose projection is within δ of p: at most 6

• If we pre-sort S1 and S2 by the y coordinate

• Then we can do our check for all p Є S1, by walking sorted 
lists S1y and S2y, in total O(n) time

The entire solution then runs in O(n log n)

https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/

https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/

