
Designing Algorithms with
Divide-and-Conquer

Lecture 06.03
by Marina Barsky

Exhaustive Computation. Generate every possible candidate

solution and select an optimal solution.

Greedy. Create next candidate solution one step at a time by

using some greedy choice.

● Divide and Conquer. Divide the problem into non-overlapping

subproblems of the same type, solve each subproblem with the

same algorithm, and combine sub-solutions into a solution to the

entire problem.

● Dynamic Programming. Start with the smallest subproblem and

combine optimal solutions to smaller subproblems into optimal

solution for larger subproblems, until the optimal solution for the

entire problem is constructed.

Main algorithm design strategies

Big problem to be
solved

Divide: Break into non-overlapping

subproblems of the same type

not the

same

type

Problem

not the

same

type

not the

same type

not the

same

type

Problem

overlapping

1. Break into non-overlapping subproblems
of the same type

2. Solve subproblems

3. Combine results

Divide-and-conquer steps

Two examples:
● Counting inversions
● Closest pair

Counting inversions

Motivation
❏ Music site tries to match user song preferences

with others.
❏ I rank n songs.
❏ Music site consults database to find people with

similar tastes.

A B C D E F

me 1 2 3 4 5 6

you 1 3 4 2 5 6

songs

How similar are
me and you?

SImilarity of rankings
❏ Similarity metric:

number of inversions between two rankings.
❏ My rank: 1,2,3,4,5,6
❏ Your rank: 1,3,4,2,5,6

- for the same songs

A B C D E F

me 1 2 3 4 5 6

you 1 3 4 2 5 6

songs

For a perfect match
you should have
ranked D at 4, but you
ranked it at 2

Definition
An inversion is a pair (A[i], A[j]) of array elements
such that index i<j and A[i] > A[j]

i 1 2 3 4 5 6

A[i] 1 3 4 2 5 6

2 inversions in total:
(3,2) and (4,2)

Problem: counting inversions

Input: an array A of length n with numbers 1,2,…n in
some order

Output: number of inversions: number of pairs A[i],A[j]
of array elements with i<j and A[i] > A[j]

● If A is sorted – what is the number of inversions?

● What is the number of inversions if A is reversed?

● What is the number of inversions in A=[1,3,5,2,4,6]?

Example

• A=[1, 3, 5, 2, 4, 6]

• Inversions:

(3,2), (5,2), (5,4)

1 2 3 4 5 6

1 3 5 2 4 6

What is the largest-possible number of inversions that a
6-element array can have?

Brute-force algorithm
for counting inversions

count:= 0

for i from 1 to n-1:

for j from i+1 to n:

if A[j] < A[i]

count:= count + 1

return count

Can we do better?

Complexity?

Algorithm count_naive (array A of n integers)

But how can we do better if total
number of inversions is O(n2)???

Idea 1: Divide + Conquer
After dividing array into 2 halves, n/2 each:
For each (i,j) recursively determine if (A[i],A[j]) is an

inversion

There are 3 possible cases (3 types of inversions):
Left inversions : if i,j <= n/2
Right inversions: if i,j > n/2
Split inversions : if i<=n/2 and j > n/2

These two can be
computed recursively

5, 3 2, 1n
2

But how to
compute these?

Developing recursive algorithm

count (array A of length n)

if n=1
return 0

Else
x = count (1st half of A, n/2)
y = count (2nd half of A, n/2)
z = count_split_inv(A, n)

return x+y+z

We do not know how
to do that

If we manage to do CountSplitInv in O(n) time

then Count will run in O(n log n) - just like Merge Sort

Idea 2. What if we use merge from
merge sort?

❏ Have recursive calls both count inversions and
sort

❏ It turns out that the merge subroutine
automatically recovers inversions!

Recursive Algorithm (in progress)

sort_count (array A of length n)

if n=1
return (A,0)

Else
(B, x) = sort_count (1st half of A, n/2)
(C, y) = sort_count (2nd half of A, n/2)
(D, z) = count_split_inv(B,C)

return (D, x+y+z)

If we manage to do count_split_inv in O(n) time then

sort_count will run in O(n log n) - just like Merge Sort

We still do not know
how to do that

B- sorted 1st half of A

C- sorted 2nd half of A

D = will contain sorted array

B = 1st sorted subarray [1:n/2]

C = 2nd sorted subarray [n/2:n]

i = 1

j = 1

for k: = 1 to n

if B[i]< C[j]

D[k]: = B[i]

i:= i+1

else if C[j] < B[i]

D[k]: = C[j]

j:= j+1

...

CB

D

i j

k

merge subroutine: from Merge Sort

A. B has the smallest element of A, C has the second--
smallest, B has the third- smallest, and so on.

A. All elements of B are less than all elements of C.

A. There is not enough information to answer this
question.

Suppose the input array A has no split inversions.

What is the relationship between the sorted subarrays B
and C?

Stop and think

B C

Sample merge

1 3 5 2 4 6

1 3 5 2 4 6

1

B C

D

i j

Discovered 2 inversions:
(3,2) and (5,2)

Sample merge

Discovered inversion
(5,4)

1 3 5 2 4 6

1 3 5 2 4 6

1 2 3

B C

D

i j

General claim

The split inversions involving an element y of the 2nd array
C are precisely the numbers left in the 1st array B when y is
copied to the output D.

Proof:

Let x be an element of the 1st array B.
❏ If x copied to output D before y, then x < y

=> no inversions involving x and y

❏ If y copied to output D before x, then y < x
⇒ x and all elements after it are (split) inversions.

Recursive Algorithm (revised)

sort_count_inv (array A of length n)

if n=1
return (A, 0)

Else
(B, x) = sort_count_inv(1st half of A)
(C, y) = sort_count_inv(2nd half of A)
(D, z) = merge_count_split_inv(B,C)

return (D, x+y+z)

Split inversions are recovered during the merge of the

sorted sub-arrays

Merge and count
• While merging the two sorted

subarrays, keep running total of
number of split inversions

• When element of 2nd array C gets

copied to output D, increment total by number of elements

remaining in 1st array B

Runtime of merge_count_split_inv: O(n) + O(n) =

O(n)
sort_count_inv runs in O(n log n) time

just like Merge Sort

CB

D

i j

Closest pair

Motivation

• Dynamic minimum spanning trees

• Straight skeletons and roof design

• Ray-intersection diagram

• Collision detection applications

• Hierarchical clustering

• Traveling salesman heuristics

• Greedy matching

• ...

“A pair of the closest points,
the one lying on a robot and
the other on its obstacles,
yields the most important
information for generation of
obstacle-avoiding robot
motions. ” ref

The closest-pair is a subroutine for:

https://www.sciencedirect.com/science/article/pii/S1474667017546546

Closest Pair Problem

• Input: n points in d dimensions

• Output: two points p and q
whose mutual distance is
smallest

A naive algorithm takes O(dn2) time.

(Number of dimensions d can be assumed a constant for

a given problem)

Can we do better?

Closest pair in one dimension

Can be solved in O(n logn) via sorting, and then linear
scanning.
Let’s develop a recursive solution to find the closest pair

• If the points are sorted by their coordinate:

• Divide the points set S into 2 sets S1, S2, by median x-
coordinate m such that p<q for all p Є S1 and q Є S2

• Recursively compute closest pair (p1,p2) in S1 and (q1,q2) in
S2

Closest pair in one dimension:
combine step

• Let δ be the smallest pairwise distance found in 2 partitions

δ = min(|p2 – p1|, |q2 – q1|

• The closest pair is either (p1,p2), or (q1,q2), or some (p3,q3)
where p3 Є S1 and q3 Є S2

• Can we find (p3,q3) in a constant time?

Closest pair in 1 dimension

• The closest pair is either (p1,p2), or (q1,q2), or some (p3,q3)
where p3 Є S1 and q3 Є S2

• Key observation: If m is the dividing coordinate, then both
p3 and q3 have to be within δ of m

Closest pair in 1 dimension

• Key observation: If m is the dividing coordinate, then both
p3 and q3 have to be within δ of m

• How many such pairs exist?

Closest pair in 1 dimension

• Key observation: If m is the dividing coordinate, then both
p3 and q3 have to be within δ of m

• How many points of S1 can lie in the interval (m – δ, m]?

• So we need to check one pair only - constant time

Closest pair 1D: recursive
algorithm

closest_pair (S – set of sorted points pi…pn, n>=2)

if |S| = 2

return δ = |p2 – p1|

Divide S into S1 and S2 at m = value[n/2]

δ1 = closest_pair (S1)

δ2 = closest_pair (S2)

δ3 = closest_pair_across (S1, S2, min(δ1, δ2))

return δ = min(δ1, δ2, δ3)
Constant time

Here we only compute the shortest
distance, but it is easy to modify to return

2 points which produced this distance

Closest pair in 1 dimension:
time complexity

T(n) = 2T(n/2) + O(1)
Which solves into O(n)

Together with sorting: O(n log n)

Constant time

closest_pair (S – set of sorted points pi…pn, n>=2)

if |S| = 2

return δ = |p2 – p1|

Divide S into S1 and S2 at m = value[n/2]

δ1 = closest_pair (S1)

δ2 = closest_pair (S2)

δ3 = closest_pair_across (S1, S2, min(δ1, δ2))

return δ = min(δ1, δ2, δ3)

We will learn why later

Closest pair in 2 dimensions

The previous algorithm does
not generalize to higher
dimensions, or does it?

2D closest pair: divide

• Taking sorting as a free O(n log n) invariant, we sort all
points in S by x coordinate

• Partition S into S1, S2 by vertical line l defined by median x-
coordinate in S

2D closest pair: conquer
• Recursively compute closest pair distances δ1 and δ2 in S1

and S2
• Set δ=min(δ1, δ2)

2D closest pair: combine

• Closest pair distances in S1 and S2 are δ1 and δ2.
δ=min(δ1, δ2)

• Now need to combine: compute the closest pair across
dividing line l

• In each candidate pair (p,q), where p Є S1 and q Є S2,

the only candidate points p, q must both lie within δ of l.

2D closest pair combine:
complications

• At this point, complications
arise, which were not
present in 1D

• It is entirely possible that all
n/2 points of S1 (and S2) lie
within δ of l

• Naïvely, this would require
n2/4 comparisons

Combining split points

• Consider a point p Є S1.

• All points of S2 within distance δ
of p must lie in a δx2δ rectangle
R

• How many points can be inside
R if we know that each pair is at
least δ apart?

• In 2D, this number is at most 6!

So we only need to perform (n/2)*6 distance calculations
during the combine step!
We do not have the O(n log n) algorithm yet. Why?

Combine in linear time

• In order to determine at most 6 potential mates of p,
project p and all points of S2 into y axis

• Pick out points whose projection is within δ of p: at most 6

• If we pre-sort S1 and S2 by the y coordinate

• Then we can do our check for all p Є S1, by walking sorted
lists S1y and S2y, in total O(n) time

The entire solution then runs in O(n log n)

https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/

https://www.geeksforgeeks.org/closest-pair-of-points-using-divide-and-conquer-algorithm/

